Normal function of euclidian integers

This is to show that the normal function of euclidian integers preserves the multiplicative property. To start lets define the euclidian integers:

Z[i]={a+bia,bZ}

Then the normal function is defined as

N(a+bi)=(a+bi)(abi)=a2+b2

Now to prove the corresponding homomorphism preserves multiplication:

N(a+bi)N(c+di)=(a2+b2)(c2+d2)=(a2c2+a2d2+b2c2+b2d2)

And from the other side

N((a+bi)(c+di))=N(ac+adi+cbidb)=N((acdv)+(ad+cb)i)=(acdv)2+(ad+cb)2