Let .
-
Positivity & identity: . If then ; conversely .
-
Symmetry: .
-
Triangle inequality: For any , Hence, with
\le \max\{A,B\}+\max\{C,D\}=d(x,y)+d(y,z),$$ since for $u_i,v_i\ge 0$, $\max(u_1+v_1,u_2+v_2)\le \max(u_1,u_2)+\max(v_1,v_2)$.
Therefore satisfies all metric axioms on .
Let A = {1/n^2 : n∈ℕ} ⊂ ℝ (Euclidean metric).
Interior(A):
- Each a=1/n^2 is isolated: ∃r>0 with (a−r,a+r)∩A={a}.
- Any open ball around a contains points not in A ⇒ no nonempty open set ⊂ A. ⇒ Int(A)=∅.
Closure(A):
- 0 is a limit point: 1/n^2 → 0 and 0∉A.
- Every other point x≠0 is not a limit point (choose r < ½·min{|1/n^2−x|}). ⇒ Cl(A)=A∪{0}.
Boundary(A):
- ∂A = Cl(A) \ Int(A) = (A∪{0}) \ ∅ = A∪{0}. (Indeed, any ball around a∈A contains a (∈A) and non-A points; any ball around 0 meets A.)
Summary: