Let .

  1. Positivity & identity: . If then ; conversely .

  2. Symmetry: .

  3. Triangle inequality: For any , Hence, with

    \le \max\{A,B\}+\max\{C,D\}=d(x,y)+d(y,z),$$ since for $u_i,v_i\ge 0$, $\max(u_1+v_1,u_2+v_2)\le \max(u_1,u_2)+\max(v_1,v_2)$.

Therefore satisfies all metric axioms on .

Let A = {1/n^2 : n∈ℕ} ⊂ ℝ (Euclidean metric).

Interior(A):

  • Each a=1/n^2 is isolated: ∃r>0 with (a−r,a+r)∩A={a}.
  • Any open ball around a contains points not in A ⇒ no nonempty open set ⊂ A. ⇒ Int(A)=∅.

Closure(A):

  • 0 is a limit point: 1/n^2 → 0 and 0∉A.
  • Every other point x≠0 is not a limit point (choose r < ½·min{|1/n^2−x|}). ⇒ Cl(A)=A∪{0}.

Boundary(A):

  • ∂A = Cl(A) \ Int(A) = (A∪{0}) \ ∅ = A∪{0}. (Indeed, any ball around a∈A contains a (∈A) and non-A points; any ball around 0 meets A.)

Summary: